
Analyzing CNN Model Performance Sensitivity to
the Ordering of Non-Natural Data

Randy Klepetko∗ and Ram Krishnan†
Department of Electrical and Computer Engineering

University of Texas at San Antonio, San Antonio, Texas, USA
Email: ∗randy.klepetko@my.utsa.edu, †ram.krishnan@utsa.edu

Abstract—Convolutional Neural Networks (CNN) have had
significant success in identifying and classifying image datasets.
CNNs have also been used effectively in classifying non-visual
datasets such as malware and gene expression. In all of these
applications, CNNs require data to be organized in a certain
order. In the case of images, this order is naturally presented.
However, in the case of non-visual data, this order is sometimes
not naturally defined and hence requires an artificially defined
order. The sensitivity of a CNN model’s performance to various
artificial orders of non-natural datasets is not well-understood.
In this paper, we investigate this problem by experimenting
with various orders of a dataset derived from malware behavior
in a cloud auto-scaling environment. We show that the ordering
can have a major impact on the performance of the CNN and
offer some insights on how to derive one or more orderings
that could provide better performance.

Index Terms—Convolutional Neural Networks; Security;
Malware Detection; Cloud IaaS; Deep Learning;

I. INTRODUCTION

Over the past decade with the advances in CNN systems,
performance of machines to classify images has surpassed
the ability of humans [1]. It has been shown that CNN
are effective in classifying sequences of text [2], acoustical
samples [3], and genomic data [4]. In all of these cases, the
data is ordered as rows and columns in the form of a matrix1.
The ordering of the rows and columns is naturally defined,
such as the spatial location of a pixel in an image, the
temporal position of a character/words in a sequence of text
and that of waveforms in audio samples, or physicality of
amino acids found in a strand of DNA. But what about data
that does not have a naturally defined order? For instance,
in [5], Abdelsalem et al. show that CNN can also be used
in dynamically identifying malware using computer process
metrics as the data source. In [6], Smith et al. compare
several machine learning algorithms, including CNN, in
dynamically detecting malware by examining the stream of
commands called by the malware process. Lihao and Yanni
,in [7], use CNN in the application of production level qual-
ity control in automobile tire manufacturing, using various
production level measurements they make during the man-
ufacturing process. Unlike images, audio signals and DNA,
in these applications of CNN, there is no naturally occurring
order that could be leveraged to order the rows and columns

1In reality, this would be an n-dimensional vector. However, we use
the term matrix interchangeably with that of a vector of 2 dimensions.

in the matrix. When we examine data such as images that has
natural relationships and compare points between rows and
columns, we can find mathematical relationships between
adjacent pixels. If we run a statistical analysis on the values
between pixels, we will find that pixels of the same object
will be highly correlated, while pixels of different objects or
edges will have a low correlation. Golinko et al. in [8], uses a
similar approach for ordering generic data sets when using a
CNN as a feature extractor for other classifying algorithms.

In this paper, we investigate this problem by experiment-
ing with various row and column orderings of a dataset
derived from malware behavior in a cloud auto-scaling
environment. We show that the ordering can have a major
impact on the performance of the CNN and offer some
insights on how to derive one or more orderings that could
provide better performance. We utilize the dataset provided
by Abdelsalam et al. [5] for this research. In their work
they arrange the data in matrices by rows, each identified
to belong to a specific computer process, and columns,
each associated with a sampled machine performance metric.
Unlike data sources that are derived from nature, there is no
naturally defined relationship that exists between these rows
and columns. It is the goal of this research to determine if
variations to the ordering of non-natural data has an affect
on the performance of a CNN in detecting malware from
machine metrics and in particular can an optimum ordering
be determined by using relationships similar to those found
in the natural world.

The contributions of this paper are:

• Show that ordering of rows and columns has a major
impact on the performance of CNN.

• Validate that maintaining ordering between data sam-
ples and sources is imperative to achieve an optimum
CNN performance, improving from 92% to 98% accu-
racy.

• Show that statistical correlation of samples is a strong
predictor of a good performing order, with an additional
performance improvement from 98% to 99%.

The remainder of the paper is organized as follows:
Section II discusses related work using CNN with non-
natural data. Section III outlines the methodology including
a description of the ordering of the data and the CNN
model. Section IV describes the analysis results. Section V

978-1-7281-0875-9/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 06,2020 at 21:48:37 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Virtual machines performance metrics

Metric Category Description
Status Process status, Current working directory
CPU information CPU usage, CPU user space, CPU system/kernel space, CPU children user space, CPU children system space.
Context switches Voluntary context switches, Involuntary context switches
IO counters Read requests, Write requests, Read bytes, Write bytes, Read chars, Write chars
Memory information Swap memory, Proportional set size (PSS), Resident set size (RSS), Unique set size (USS), Virtual memory size (VMS), Dirty

pages, Physical memory, Text resident set (TRS), Library memory, Shared memory
Threads Used threads
File descriptors Opened file descriptors
Network information Received bytes, Sent bytes
Group Information Group ID real, Group ID saved, Group ID effective

summarizes and concludes this paper.

II. RELATED WORK

In this section we present other research that examines
using non-natural data as the source for the CNN analysis.
CNN were initially designed as a mimic to human vision
and since have achieved super human performance in this
task, but what about data sources that do not relate to vision?

In [7], Lihao and Yanni analyze the quality of rubber tire
treads based on the parameters measured during the manu-
facturing process. There are four levels to the manufacturing
process with eleven metrics sampled at each level. They
vectorize these all of these parameters, with some filtering
for noise, and then feed those vectors into a CNN. They were
able to achieve a 94% accuracy with this process. Other than
noise filtering they did not discuss data preparation or how
it was organized as it was fed the CNN.

Golinko et al. in [8], examine using a one dimensional
CNN as a feature extractor for other machine learning
algorithms (kNN with k=1, SVN, and RF) with non-natural
“Generic” data and examine if ordering of the source data
for the CNN has any impact on performance of the final
classifying algorithm. They propose using statistical corre-
lation as a method for identifying relationships of adjacent
data and show that not pre-ordering the data for CNN
feature extraction is detrimental to performance. They show
ordering by correlation offers significant improvement in
most cases, especially for kNN and SVN, improving final
average accuracy from 76% with no feature extraction to
82% if the features were ordered by correlation prior to
CNN feature extraction.

One field that CNN has been used on non-natural data is
in the dynamic analysis of malware. This is where malware
is intentionally injected into a machine and the resulting logs
and reports are studied for unique patterns and results that
could be used in identifying future infections.

Smith et al. in [6], perform dynamic malware analysis
using process calls made by the executed malware code
as the data source. Executed code submits a series of
commands calls in sequence. These calls are command
strings (ie. “ssh”) which are pre-processed via a one hot
encoding and commands that are issued during the same
time segment are included into a single on hot encoded
vector. A series of these vectors represent the executed code

as the calls are submitted to the kernel over time. These
vectors are then analyzed as a group by several different
machine learning techniques, comparing malware executed
code and non-malware executed code. They show that a
CNN can have a 94% accuracy with a 95% precision and
89% recall. They do not discuss the ordering of the one hot
vector.

In [9], Tobiyama et al. compile more information regard-
ing the process command calls from the machine logs. These
include time of the process, name of the process, process
ID, name of the command, the current working directory,
the result from the command, and any other information
included when the command was called. They then feed this
information into a pre-trained RNN for feature extraction,
taking the vector output of the RNN and feed that into
a CNN for analysis. With this process they were able to
achieve an AUC of 96%. They do not discuss the ordering
of the one hot vector prior to feeding it to the network for
analysis.

Abdelsalem et al. in [5], use metrics retrieved by hy-
pervisors in a cloud environment that track the individual
processes on a virtual machine. This is a set of 35 metrics
that are captured for each process running on the VM.
They are then compiled into a process row, metric column
matrix which is supplied to a 2D-CNN. They achieved an
89% accuracy, but did not attempt to optimize the data by
maintaining process row ordering or identify a preferred
metric column ordering during pre-processing. Our research
expands on the techniques discussed in this paper.

Based on this related work, our research goals are:
• Identifying a preferred or even an optimum order for

any data that is supplied to a CNN for analysis.
• Improving dynamic malware detection when using a

CNN by properly pre-processing the data with regards
to row and column ordering.

III. METHODOLOGY

Our goal is to determine if modification of the ordering of
rows and columns of the data matrices affect performance
of the deep learning model. So first we examine the data.

A. Overview of the malware dataset

The data we are using are metrics sampled by process, as
found in Table I. A sample is taken every ten seconds from

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 06,2020 at 21:48:37 UTC from IEEE Xplore. Restrictions apply.

Web Server Application
Server Database

Clients

Clients

Web Server

Web Server Application
Server

Web Server

Tier 3Tier 2Tier 1

Fig. 1: 3-Tier Web Service

several Linux virtual machines. These virtual machines are
configured in a typical scalable three tier web service envi-
ronment, diagrammed in Figure 1. One is a database server,
while others are web servers supplying html pages to clients
or WordpressTMapplication servers supplying packaged data
between the database and web servers. Due to the scalability
of the cloud environment, there could be multiple application
or web servers.

While the samples are taken from all of the machines in
the environment over thirty minutes, we inject a malware
executable into an application server at the fifteen minute
mark, continuing to take samples for the remaining portion
of the collection experiment. From this application server,
we have a set of data labeled “clean”, before the malware
was injected, and “infected”, after the injection.

After 114 different experiment’s each on a separate envi-
ronment and with a unique malware, we end up with samples
from 912 virtual machines. 114 of the application servers
were infected which resulted in over 29 million process
samples, 2.9 million from the infected machines.

B. Organization of the malware dataset

These metrics are then organized into a “process matrix”
where every row of the matrix represents a process pi, and
every column of the image represent a particular metric mi.

Xt =



m1 m2 . . . mk

p1
...

... . . .
...

p2
...

... . . .
...

...
...

...
. . .

...

pn
...

... . . .
...


C. Metric Column Ordering

Since we have a “process matrix” a question remains on
how to order the rows and columns? When we examine
visual images, we are able to identify objects and edges.
If we run analysis on the pixel values of an image we will
find that pixel values are statistically correlated, or the value
of a pixel is closely related to the value of an adjacent
pixel within the same object. By converse if we examine the
relationship of pixels on edges and between objects, we’ll

find there is little, or even a negative correlation. We use
this knowledge as a basis for ordering.

Statistical correlation is the association found between
parameters, causal or not. This means that change in one
parameter corresponds to a related change in the other
parameter. In statistics this is mathematically defined by:

ρmimj
=

E(mimj)− E(mi)E(mj)√
E(m2

i)− E(mi)2 ·
√
E(m2

j)− E(mj)2
(1)

where E(mi) is defined as the expected value or mean of
mi.

In MySQLTMwe ran statistical analysis on all possible
pairs of numeric metrics for all 29 million samples. This
resulted in a table of correlation values, a real number from
-1 to +1, for every pair of metrics. We then organized several
ordered lists for each of the metrics using the correlation
value as a parameter for constructing the order.

The first order we label “Correlated” where adjacent
metrics have correlation values that are maximized:

argmax
ρ

(ρmimi+1
)∀i = 1...k (2)

or we define an order that maximizes the following equation:

k∑
i=1

(ρmimi+1) (3)

This order is designed to generate “objects” from related
metrics for the CNN identification.

The second order we label “ABS-Correlated” where ad-
jacent metrics have the absolute value of the correlation
maximized:

argmax
ρ

∣∣ρmimi+1

∣∣∀i = 1...k (4)

or the order maximizes the following equation:

k∑
i=1

∣∣ρmimi+1

∣∣ (5)

This takes in consideration that strongly negative correlated
pixels could represent different parts of the same object.

As a counterpoint, we also attempt to generate a poorly
performing order, we label “Anti-Correlated”. This is where
the correlation values are minimized:

argmin
ρ

∣∣ρmimi+1

∣∣ ∀i = 1...k (6)

or the order will minimize the absolute value equation:

k∑
i=1

∣∣ρmimi+1

∣∣ (5)

For comparison, we randomly derive ten additional
columns orderings. This give us the following list of column
ordering experiments:

• Correlated

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 06,2020 at 21:48:37 UTC from IEEE Xplore. Restrictions apply.

• ABS-Correlated
• Anti-Correlated
• Ten Random
Most of the data metrics sampled are numerical values

which are normalized and included in the ordering scheme
mention above, but we also had two string metrics, “status”
and “cwd” or current working directory. Correlation has
no bearing on string values, so these metrics needed to be
handled separately. In the paper [5] by Abdelsalem et al.
the “status” was one hot coded and included as additional
columns added to the front of the matrix while “cwd” was
ignored. This increased the number of columns to 45. We
decided to include the “cwd” as a metric in this set of
analysis. The string was one hot encoded into a set of vectors
and added between the status one hot vectors and the ordered
metrics. This expanded the number of columns from 45 to
75.

D. Process Row Ordering

When examining Abdelsalem’s et al. data pre-processor
from [5], we discovered that the row ordering of the “process
matrix” was set per VM, but not across all VM’s. Different
VM’s ran different processes, many unique per VM, and
the number of all of the processes could be large and
computationally expensive if all included. It was obvious
that before we decide on an arbitrary order to test, we needed
to construct a method that establishes an order that remains
systematic across all experiments.

In the analysis performed by Abdelsalem et al. in [5],
they limited the number of process rows to 120, organized
by name. Most VM’s ran around 105 processes, but some
ran more than 120.

When we ran data queries on the processes, by name, we
discovered that 129 of them were executed on more than
one machine. We call these the “non-unique” processes, and
decide that these will make the first 129 rows of our image.
If a sample was selected, and one of these “non-unique”
processes was not running, we supplied that row with zero
values.

At the bottom of the matrix is where we place any
“unique” process. We left 21 place holders for “unique”
processes, which are normally zeroed out if none are present.
In cases where there were more than one “unique” process
they were ordered alphanumerically in this section. As a
result the row count increases to 150.

We attempted to identify statistical correlations between
processes, but that query proved to be infeasible with ques-
tionable results. Instead we decided to study several different
methodologies for ordering the 129 non-unique rows using
relationships that already exists between the processes.

One of the easiest methods is to simply allow the process
name dictate the row order. This row ordering we label
“Alphanumeric”. This approach takes the perspective that
related processes my have related names.

Another approach is to identify referential relationships
between processes. As one process initiates the execution

of another process, the first process is referred to as the
parent and the initiated process is referred to as a child. Our
data samples include the parent and children relationships so
we use this information to identify all of the children and
gather them together in a group. We can determine which
of these children are initiated more often, so we use this as
the ordering among the children. We label this row ordering
“Sibling Relationships”.

We also are able to identify the number of virtual ma-
chines that execute a process, and the number times that a
process is executed for all of the experiments. We call the
number of machines a VM count, and number of executions
as the PID count. We use these parameters to establish a
couple of other ordering.

“VM/PID Count” uses the VM count descending as the
order for the processes, and when there is tie for the number
of machines that call two different processes, we use PID
count, descending, as the tie breaker. In this ordering the
first row is the process that is run on the most number of
machines and is call most by those machine, while the last
row is the process called the least.

“PID/VM Count” uses the total number of calls, de-
scending, as the primary parameter that determine the row
ordering, and in cases where two processes are called equal
number of times for all of the experiments, the number of
machines making those calls breaks the tie.

For comparison, we randomly derive ten additional row
orderings. This give us the following list of row ordering
experiments:

• Alphanumeric
• Sibling Relationships
• VM and PID Count
• PID and VM Count
• Ten Random
Between ten randomly generate rows and ten columns,

this gives us 100 different arbitrarily devised matrix order-
ings with which we compare performance to our derived
orderings.

IV. EVALUATION

A. Testbed

We run our pre-processing and analysis using a desktop
with the following specifications:

• Central Processor Unit: Intel c©CoreTMi7-8700 CPU @
3.2 GHz x 12

• Memory: 15.6 GB
• Graphical Processor Unit: GeForceTMGTX 1070i/P-

CIe/SSE2
• OS: 64-bit Ubuntu c©18.04LTS (Gnome 3.28.2)
• CUDATM: 10.0
• Python: 3.6

We used TensorflowTMwith TensorboardTMas the underlying
engine to perform the CNN analysis. We found that pre-
processing to produce the all of the analyzed data for a
single matrix ordering definition from the raw data contained

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 06,2020 at 21:48:37 UTC from IEEE Xplore. Restrictions apply.

Input Matrix: 150 x 75

Output Prediction: Clean / Infected

11,250 Input Nodes

32 Node Convolutional Layer, 3x3 filter, Relu activation

2 to 1 Max Pooling Layer

64 Node Convolutional Layer, 3x3 filter, Relu activation

2 to 1 Max Pooling Layer

1024 Dense Layer, Relu activation

512 Dense Layer, Relu activation

Fig. 2: LeNet-5 CNN Model

within a MySQLTMdatabase would take about two hours but
did not require the GPU. The CNN analysis on a single
matrix ordering definition leveraged the GPU and would
finish in about 2.5 hours. When analyzing several matrix
orderings at a time, the pre-processing would not interfere
with the GPU operations so both could be daisy chained on
a single machine for improved throughput.

B. CNN Model

The CNN matches the model that was used by Abdel-
salem et al. [5], a LENET-5 version. We duplicated it to
compare results. Figure 2 shows the layout of the CNN
model. Several details:

• Two Convolutional layers where the first consisting of
32 nodes and the second consisting of 64 nodes. Each
convolutional layer uses a 3x3 filter and relu as the
activation function.

• After each convolutional layer is a max-pooling layer
with a downsize of a factor of two to one.

• Two dense layers, the first consisting of 1024 nodes and
the second consisting 512 nodes. Relu was also used
as the activation function for the dense layers.

• Predictive layer uses binary cross entropy loss function
to produces a probability that the data sample examined
is infected or not.

• We ran training for 20 epochs with a batch size of 64.

C. Results

Our analysis splits the infected machines samples into
three groups: 60% for training, 20% for validation and 20%
for testing. All of the data for a single virtual machine
was included in one of these groups, or in other words, no
machine data was split between groups.

To properly study the affects of column and row order-
ing we first built a background of 100 randomly ordered
matrices for comparison. Since malware infections are rare
compared to the normal machine activity we decided that
it is more important to compare the precision/recall curves.
In figure 3 and 4 we see a sample spread in performance
for 100 (10x10) random variations of the row and column
ordering of the source data matrix versus other row and
column ordering that we methodically defined.

We compare this result to the paper [5] by Abdelsalem et
al. where row ordering between experiments was not taken
into consideration in figure 3a. It is obvious that ordering
the rows between experiments is imperative to reach high
performing results.

Now we compare our 100-random curves with differ-
ent metric column orderings. For each methodical metric
column ordering we used all of the various process row
orders so the column order can be analyzed with some
independence from row ordering. In figure 3b we show
correlated metric columns with various row ordering. Cor-
related columns appear to reside in the upper spectrum of
the randomly ordered curves.

When we look at the absolute value of the statistical
correlation between metrics we find the following graphs
3c. In this set of curves we not only find that they reside
the upper spectrum of the random curves, but possibly
an optimum result appears, one better than any random
ordering.

Next we examine our counter example, Anti-Correlated
columns ordering. As expected, in 3d we find that the curves
do not align to the upper end on the randomly ordered
curve spectrum, and most curves show rather poor results
in comparison, residing on the lower end of the spectrum.

Next we examine our results for the defined row orderings.
Again in each methodical row order case we used all of the
various column orderings for some analysis independence
between the rows and columns.

The results for the orderings based off of initial al-
phanumeric relationships is found in graph 4a. We see in
that alphanumeric row ordering results are spread relatively
evenly among the randomly ordered curves.

Examining the results for the orderings that are based off
of sibling relationships in graph 4b we see our results are
spread among the random curves. In general they reside on
the higher than average end of the randomly ordered curve
spectrum, but nothing stands out as exemplary.

Studying the results for the orderings that are based off of
the number of machines that make the process call followed
by the number of execution or Process ID counts in graph 4c.
we see in our results are spread among the random curves.
Again they are higher than average, but nothing stands out
as exemplary.

Studying the results for the orderings that are based off
of Process ID counts followed by number of machines that
call the process in graph 4d. we see in our results are
again spread among the random curves. These curves though

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 06,2020 at 21:48:37 UTC from IEEE Xplore. Restrictions apply.

0.90 0.92 0.94 0.96 0.98 1.00
Recall

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Pr
ec

isi
on

Precision-Recall Curve for: Random-100 vs. Original
Random Ordered Rows and Columns
Previous Work - Unordered Rows

(a) Vs. Non-Ordered Rows between VM Samples

0.90 0.92 0.94 0.96 0.98 1.00
Recall

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Precision-Recall Curve for: Random-100 vs. Correlated Columns

Random Ordered Rows and Columns
Various Ordered Rows with Correlated Columns

(b) Vs. Correlated Columns

0.90 0.92 0.94 0.96 0.98 1.00
Recall

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Precision-Recall Curve for: Random-100 vs. ABS-Correlated Columns

Random Ordered Rows and Columns
Various Ordered Rows with ABS Correlated Columns

(c) Vs. Absolute Value Correlated Columns

0.90 0.92 0.94 0.96 0.98 1.00
Recall

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Precision-Recall Curve for: Random-100 vs. Anti-Correlated Columns

Random Ordered Rows and Columns
Various Ordered Rows with Anti-Correlated Columns

(d) Vs. Anti-Correlated Columns

Fig. 3: 100 Randomly Ordered Rows and Columns PR curves vs. Different Columns Ordering Sets

reside on the lower set of random curves, informing us this
is not a desired ordering.

As a comparison for other studies that only take the
accuracy in consideration for evaluation, we include the
following two graphs that display the means and standard
deviation spread for the various row and column ordering
performance accuracy. In 5b we share the accuracy spread
for the various row ordering and in 5a we share the accuracy
found different column ordering including the non-ordering
from the previous research by Abdelsalam et al. [5].

V. CONCLUSION

A. Summary

From this set of experiments it is clear that when using
CNN analysis on non-natural data, especially process metric
data for malware classification, some care is required in
organizing source data to achieve improved results. It also
shows that using some form of statistical correlation between
rows and columns may produce an optimum result. It

includes that malware detection using process metrics as the
data source for CNN can achieve a high degree of accuracy
(> 99%) as long as the ordering of the rows and columns
of the data matrix are properly defined.

B. Further Work
Based on these results, and those found in other papers,

there is additional work that can be performed to further this
research.

• With this data set we were able to identify relationships
between metric columns through statistical correlation
that provided preferred results, but the process row
ordering results were moderate at best. Some work
could be performed to identify relationships between
process rows that could produce optimal results.

• Currently the data pool consists of only 114 Linux
malware samples. An increase the in data samples, in-
cluding non-Linux (WindowsTM) malware, would give
this methodology confidence in tackling security issues
in many environments.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 06,2020 at 21:48:37 UTC from IEEE Xplore. Restrictions apply.

0.90 0.92 0.94 0.96 0.98 1.00
Recall

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Precision-Recall Curve for: Random-100 vs. Alpha-Numeric Rows

Random Ordered Rows and Columns
Alpha-Numerically Ordered Rows with Various Ordered Columns

(a) Vs. Alphanumeric Rows

0.90 0.92 0.94 0.96 0.98 1.00
Recall

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Precision-Recall Curve for: Random-100 vs. Sibling Rows

Random Ordered Rows and Columns
Sibling Ordered Rows with Various Ordered Columns

(b) Vs. Sibling Related Rows

0.90 0.92 0.94 0.96 0.98 1.00
Recall

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Precision-Recall Curve for: Random-100 vs. VM & PID Rows

Random Ordered Rows and Columns
VM & PID Count Ordered Rows with Various Ordered Columns

(c) Vs. Rows Ordered by VM count then PID count

0.90 0.92 0.94 0.96 0.98 1.00
Recall

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

Precision-Recall Curve for: Random-100 vs. PID & VM Rows

Random Ordered Rows and Columns
PID & VM Count Ordered Rows with Various Ordered Columns

(d) Vs. Rows Ordered by PID count then VM count

Fig. 4: 100 Randomly Ordered Rows and Columns PR curves vs. Different Row Ordering Sets

Previous
Work

Unordered
Rows

Alpha-
Numerical

Rows

Rows by
Sibling

Relationship

Rows by
VM & PID

Count

Rows by
PID & VM

Count

Randomly
Ordered

Rows

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Te
st

 A
cc

ur
ac

y

Test Accuracy Means And Standard Deviations
for Different Row Ordering

(a) Accuracy of different row ordering

Correlated
Columns

ABS-Correlated
Columns

Anti-Correlated
Columns

Randomly
Ordered
Columns

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Te
st

 A
cc

ur
ac

y

Test Accuracy Means And Standard Deviations
for Different Column Orderings

(b) Accuracy of different column ordering

Fig. 5: Test Accuracy Mean and Standard Deviation for Different Row and Columns ordering

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 06,2020 at 21:48:37 UTC from IEEE Xplore. Restrictions apply.

• We limited the deep learning model to a simple CNN
Lenet-5 model. Other models could provide better re-
sults. Time based models such as LSTM have potential
with this data source. Also using the compiled data sets
against a model ambivalent deep learning algorithms
such as Auto-KerasTMcould be an option.

• We limited our analysis to data derived by malware
on a cloud environment. This methodology could be
potentially valuable in classification problems in other
environments. Identifying new classification questions
using novel non-natural data sources, perhaps indus-
trial, for testing this process is another avenue for future
research.

ACKNOWLEDGMENT

This work is partially supported by NSF Grants HRD-
1736209 and CNS-1553696, NSA CAE-CO Initiatives, and
DoD ARL Grant W911NF-15-1-0518.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification,” in The
IEEE International Conference on Computer Vision (ICCV), December
2015.

[2] J. Y. Lee and F. Dernoncourt, “Sequential short-text classification
with recurrent and convolutional neural networks,” CoRR, vol.
abs/1603.03827, 2016. [Online]. Available: http://arxiv.org/abs/1603.
03827

[3] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications:
an overview,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, May 2013, pp. 8599–8603.

[4] P. Mobadersany, S. Yousefi, M. Amgad, D. A. Gutman, J. S.
Barnholtz-Sloan, J. E. Velázquez Vega, D. J. Brat, and L. A. D.
Cooper, “Predicting cancer outcomes from histology and genomics
using convolutional networks,” Proceedings of the National Academy
of Sciences, vol. 115, no. 13, pp. E2970–E2979, 2018. [Online].
Available: https://www.pnas.org/content/115/13/E2970

[5] M. Abdelsalem, R. Krishnan, Y. Huang, and R. Sandu, “Malware
detection in cloud infrastructure using convolutional neural networks,”
IEE 11th International Conference on Cloud Computing, 2018.

[6] M. Smith, J. Ingram, C. Lamb, T. Draelos, J. Doak, J. Aimone, and
C. James, “Dynamic analysis of executables to detect and characterize
malware,” in 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), Dec 2018, pp. 16–22.

[7] W. Lihao and D. Yanni, “A fault diagnosis method of tread production
line based on convolutional neural network,” in 2018 IEEE 9th In-
ternational Conference on Software Engineering and Service Science
(ICSESS), Nov 2018, pp. 987–990.

[8] E. Golinko, T. Sonderman, and X. Zhu, “Learning convolutional
neural networks from ordered features of generic data,” in 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), Dec 2018, pp. 897–900.

[9] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,
“Malware detection with deep neural network using process behavior,”
in 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), vol. 2, June 2016, pp. 577–582.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 06,2020 at 21:48:37 UTC from IEEE Xplore. Restrictions apply.

